打印

用现代的观点看佛教

六、比较与应用  中观宗和实验对贝尔不等式的破坏二者,都向我们最珍视的实在性原则——独立的或者内在的存在——提出了尖锐的挑战。但是物理学只研究物质领域,而中观则分析一切人类经验;所以比较能走多远呢?不仅如此,虽然局域隐变量理论及其完备性和局域性的假定是站不住脚的,但就实验对贝尔不等式否定的后果并未达到完全的一致意见。对于量子力学的哲学意义也还有许多争论。在我们对贝尔不等式破坏的理解这个阶段上,以及我们目前对量子力学本身的理解水平,我们可以有理由肯定什么呢?在本节中,我将部分地回答这些问题,强调这些事实依赖于我们目前对物理学的理解,开始将中观的空性教义应用于对贝尔不等式和量子力学的解释,并将其与由Paul Teller和其他人发展的量子力学的哲学结合在一起。
  在接下来的段落中,我只提供反对决定论的局域隐变量的例子,正如贝尔在他1964年的分析中所做的那样。在这些理论中,假定光子离开光子源之后偏振性具有一种确定值。例如,附录表1中第一列显示光子8种可能的偏振性确定状态,光子完全决定了检测器对于一个给定的位置反应。在稍后的工作中,贝尔和其他人分析了更加普遍的局域随机隐变量理论。这些同样被实验所排除的理论,只给出了检测器反应的这样的概率,它们依赖于光子和检测器位置的一些更加普遍的状态。光子不是被看作携带一种偏振性的确定状态;所以我们将我们的注意力转移到检测器反应的概率上来。现在完备性和局域性的概念变得更加微妙了,但是感谢Jarret和Shimony,我们准确地知道在这些局域随机隐变量理论中独立性的假定如何进入了贝尔不等式。假定了三种型式的独立性:
  1. 一侧检测器反应的概率独立于另一侧开关的位置。
  2.光子源发出的概率的统计混合独立于两侧检测器的开关位置。
  3.一侧检测器反应的概率独立于另一侧检测器的反应。

  分析显示,局域性只要求第一种和第二种独立性,这同样也为量子力学理论所遵循。但是结果独立性(第三种)却不为量子力学所遵循。考虑到局域性的压倒性证据,结果独立性是一种自然和量子力学似乎都破坏的假定。要将检测器反应的概率或者一侧结果的概率隔离出来,并认为它与另一侧的结果分离开来是不可能的,即使在两侧的测量之间不可能有物理或信息的关联。这对大多数人来说是神秘的。按照中观所激发的评论,这种神秘观可能会有所减弱。
  尽管在量子力学中,光子是最瞬时的实体,从幽灵般的概率中喷发出来接受测量,我们还是倾向于将它们当作沿着确定的轨迹在空时中旅行的具体的实体。我们太过经常地隐含地假定,它们是完备和自足的,独立于间隔的状况和事件。例如在教室、实验室、或者在目前这篇文章中,我们差不多总是这样来谈论贝尔实验:“两个相互关联的光子被送往相反的方向······”。理智上我们完全知道,相互关联的光不可能严格地在这种分离的意义上来考虑,但是我们几乎总是陷入这种思维习惯中。我们经常实用地辩护说,这会使得特殊的应用更加容易。但是即使通常关于局域性的讨论,经常隐含地假定一个完全确定的粒子般的实体,其在轨迹上瞬间的位置与另一个事件是或不是类空(space-like)分离的。(施加局域性的限制并不一定牵涉这一概念上的谬误。)换言之,我们通过将光看成是一种在完全确定的轨迹上运行的粒子般的光子,积习难改地将内在的、非关系的存在增益给光。这种与生俱来的倾向就是Teller所说的“个别论”的毛病。这种思维习惯如此强大,以至于它甚至也体现在John Weller经常重复的唠唠叨叨命令中:“以今天话说,波尔观点(和量子理论的核心内容)可以归纳为一个单一的、简单的语句‘任何一个现象,除非是一个被观察到的现象,否则就不是一个现象。’”虽然光除非被观察到否则不是一个光子,我们通常还是把它看成是一种独立存在着的实体,具有完全独立于遥远的事件和结果的属性。
  虽然是我们器官活动正常通常模式的剧烈颠倒,中观断言现象的最高真理,其最基本的性质,是其内在的依存性和彼此的关联性。现象的基本性质是其关联和联系,而不是其孤立的同一性。通常的思维习惯承认对象的联系,例如相互联系,但是认为这些属性对于光的基本属性来说是偶然的。或者象Teller可能会说的那样,某些量子属性(例如相关光的性质)是内在联系的——其基本联系不会超越于其非联系的属性。Teller不会从全面的角度来考虑个别性与内在联系,即不会象中观应用类似概念——内在的存在与空性——那样。在他思维的这个阶段,他只把他的原则应用于解释科学哲学问题,而没有确定其可应用的范围。
  实验显示了,相关性对于光来说在最基本的意义上是内在的——一侧检测器测量的结果与在另一侧发现的结果精密相连。在现象的终极真理是内在存在的空性、其依存性和相关性这一意义上,我们不能也不应该用试图通过各种(超出光之外的或其它的)联系使内在存在的实体发生关系来寻求对这些相关属性的解释。换言之,总是这么说是令人厌烦的:“本质上联系的实体在一边,它在测量时被命名为‘光子’,它与另一边的关系性实体的联系是如此本质性的,它们必须被整体性地考虑。”但是量子的形式化及其叠加的原则在数学上告诉我们的正是这种类似的内容,尽管我们在将其应用于我们正常的实体化或个别化思维方式时会感到困难,这种思维不加反思地将现象增益为内在的存在。
  如果局域性在未来的物理学中需要修改的话,那么这对物理学将是极端重要的,但是与我们今天的讨论没有直接的关系。因为那时说检测器的反应是一个依赖性相关事件仍然是正确的,它将会是以类空分离的事件为条件的或者说瞬间依赖的。这种对类空分离事件的依存性将会是对其独立存在的断然否定。内在的存在,至少在贝尔类型的实验中,在未来的物理学中是不可能复辟的。
  尽管量子力学在过去60年中取得了意想不到的成功,包括最近令人震惊的强、弱相互作用和电磁作用的统一,量子力学目前的形式可能会比实验对贝尔不等式的否定还要短暂。即使如此,简要地描述量子力学最基本的概念原理并将其与中观的分析联系起来还是值得的。
  量子力学的哥本哈根标准解释有两个紧密联系的核心原理。首先,量子对象不具有客观的或者具体空时的存在,即不具有独立于整个测量状态的完全确定的可测量的属性。永远必须要在进行测量的具体实验安排的背景下才能考虑对象。在上述实验中,一侧检测器的反应虽然与另一侧检测器的反应是类空分离的,必须要与它整合起来考虑。未经测量的对象,独立于其被观察的确切实验状态的对象,根本就不存在一个确定的客观状态。观测仪器和被观测对象是一个按照量子力学所涉及的无形整体或系统的互相补充的组成部分。按照波尔的观点:“孤立的物质粒子是一种抽象,只有通过其与其它系统的相互作用才能确定并观察其属性。”在中观中类似的思想运动是确立所有对象都缺乏独立的存在。
  在上述的实验中,按照量子力学的标准观点,光子并不具有完全确定或外在的性质(偏振性组合如+-+或者-+-),即不具备先于或者独立于现实的测量事件的性质。在测量事件前,对象只有的抽象“存在”, 即只有作为由波函数所描述的相互贯通的概率或者相关的潜在可能性,只有包含了有关量子体系的所有可能知识的量子力学的数学结构。虽然波函数是我们所能获得的有关体系的最多的知识,但是它并不涉及到任何具体存在于空时中的物质的、客观的实体。相反,叠加原则是内在的联系在数学上的一种表现。虽然在检测器的反应之间不存在任何物理的或信息的联系,一侧检测器检测的可能性依赖于另一侧检测器的反应:内在的联系具有可测量的后果。
  即使在对量子力学的各种解释之间对有关量子测量过程的细节存在着争论,许多人(如在哥本哈根解释中)都断言:测量是量子事件向宏观世界中的事件的一次不可逆地放大。因此看上去俱缘中观强调对存在的增益与量子力学是有矛盾的。当然,总是可以象许多人争辩的那样,说一切科学都是一种心灵构造的世界,它是从人与自然之间复杂的相互作用中产生出来的;但这不是现在的关键问题。量子力学根本不象中观派那样把意识置于核心位置。这种明显的分歧可以通过欣赏中观的认识论和形而上学观点的区别而得以缓和。认识论对于为什么对象表现出独立存在的解释是用增益的术语给出的,而习俗对象被理解为由心灵命名的;但是形而上学的真理却是:即使抛开心灵的作用,对象也是依存地相互关联的。对佛陀而言,世界被真实地看作是空的、依存地相互关联的,并且不存在施加于现象之上的独立的增益活动。事实上,传统宣称佛陀甚至连一个可以将名义上的存在增益于对象的概念意识都没有,尽管佛陀所感知的一切只是名义上的存在。
  这种量子力学的非意识解释的一位著名捍卫者,John Wheeler也清楚地理解心灵增益内在存在或(Teller可能会说的)个别化的倾向。Wheeler说,“我们称为实在的内容包含了几个观察的标竿,我们用一种精致的想象和理论的人为构造物填充于其中。尽管在日常的环境中说世界独立于我们而‘外在地’存在是有用的,但这种观点是再也站不住脚的。在这是一个‘共同参与的宇宙’说法中有一种奇异的感觉。”
  这牵涉到哥本哈根解释的第二个原理:对象由测量活动本身带到了客观的存在。对象只有通过测量活动才能变成空时现象。或者,如Wheeler所说:“除非是被观察的现象,没有一个基本的现象是现象。”在中观的语言中,实体仅作为缘起的种属而存在。在中观中发现的空性与缘起的亲密关系,与量子力学中发现的很相象,解释中的这两个主要原则总是保持紧密相连。

TOP

七、概括与结论  量子力学60年来在权力、可应用性和优雅方面稳步地增长和加强。从20年代末和30年代初波尔、海森堡、波恩和其它人发展量子力学的哥本哈根解释以来,其哲学原理只经受了适度的修正。尽管如此,关于量子力学的意义仍然存在热烈的辩论,其中许多由这里评述的最近贝尔的分析所加强。量子力学缺乏合适的哲学框架确实是量子革命如此缓慢和痛苦的主要原因之一。我已尝试表明,对中观关于空性观点的同情理解可以帮助消化量子力学的意义。象Teller一样,我主张将我们的哲学立场从个别论或对内在存在的信念转移到基本的关系性,而不是修改量子力学的数学结构。
  一方面中观可能对理解量子力学有所帮助,同时量子力学也可以帮助理解中观。如果这种古代的教义要征服现代人,它需要更多的当代例证,而不是“龟毛的外套”或者将绳子误认为蛇。量子力学可以提供强有力的例证来说明中观的某些侧面。它也可以复活例如俱缘中观派和依自起派古代的争论,后者主张在习俗意义上有内在的存在,这种立场在实验对贝尔不等式的否定面前更加难以坚持。
  然而,目前这篇文章决非要通过物理学来证明中观佛教的有效性。使用科学证明或者否定各种宗教或世界观的主张有一个命运不济的漫长历史。撮合一种世界观与科学婚姻的尝试注定会过时。相反,我所做的是尝试理解重要的和经实验证实的哲学论断,使得关于某些量子属性缺乏独立存在的个别化理论独立化,并将其与中观的空性原理结合起来。
  虽然许多哲学体系可以与实验对贝尔不等式的否定结合起来,我主张(中观的关键概念)空性,谈论量子力学的核心问题具有独一无二的直接性和力量。我已尝试应用空性来理解实验。然后我给出量子力学的标准观点,并因此建立与中观进一步的联系。我希望用这种方式去获得对古代解脱哲学和现代物理科学结果的一种更深层次的欣赏。考虑到科学-技术世界观的压倒性主导地位,目前形式的比较工作当然是中肯的,如果它能避免将中观或任何其它类似的思想主体部分还原为科学的一个分支的罪恶的话。

TOP

附录:贝尔不等式的非技术性推衍  假定上述包括到第五节前两段的讨论,我们可以推导出贝尔不等式的一个简单形式。现在我给出一个非技术的推导,它只需要基本的高中数学。
  为方便起见,以第四节中描述的方式所收集的数据可以分为两种情形:情形1,两个检测器具有相同的开关设置,情形2,开关设置不同。下面逐一探讨。

  情形1:两个检测器具有相同的开关设置。
  现在数据是在开关设置为A-A,B-B,C-C的情形下收集的。这是EPR1935年在挑战量子力学的论文中所考虑的实验的基本精神,尽管那时只是一个思想实验而已。其数据可以简单概括如下:
  1. 两个检测器总是记录到以同样的概率随机产生的相同记号++和--。
  2. +-和-+从不产生。

  首先,必须确立两个关键的事实:在情形1中,对于三个检测器设置A-A、B-B、C-C中的任意一个,测量总是产生“+”“+”或“-”“-”而从不产生“+”“-”或“-”“+”。从这一点,我们可以推断出第一个关键事实:光子对的每一个成员在一个选定的方向上一定有相同的极性。如果在选定的方向上极性不相同,则可能会测量到+-或-+的结果,和情形1的结果相冲突。通过回忆一侧的开关设置与测量和另一侧的之间具有类空分离来确立第二个关键事实。它们之间不可能发生通讯,右侧粒子和检测器无法知道左侧检测器的位置和测量。因此我们可以选择沿着B或C测量右侧光子的极性,不会有充足时间将此信息通过任何方式传回给左侧光子来影响左侧的测量。例如说,我们用设于A的左侧检测器测量得+,设于B的右侧检测器测量得—。依靠着一对光子在一个给定的方向上观察到相同的极性,我们实际上测量了右侧光子的2个成分(沿A +和沿B-)。当然,这还利用了完备性或左右两侧光子存在彼此相互独立的假定。
  我们同样还可以选择沿着C测量右侧光子,从而获得沿着A和C两个方向的两个值。这样我们推断右侧光子在A、B、C三个方向上一定同时具有完全特殊的极性,不管开关的设置如何。既然论证对于左侧和右侧来说是对称的,这就确立了第二个关键事实:两个粒子一定对于三个可能位置中任何一个都具有完全特定的极性。这两个关键的事实联系起来意味着,极性设置在三个方向上完全是特定的,并且它们与每一个光子对同一。情形1的数据连同局域性、彼此相互独立存在的假定,以及归纳推理的使用要求这一结论。
  在前述的分析中,标准的推广是从以相同开关设置测量相同极性光子对的案例到不同开关设置的案例。既然一侧的测量或者检测器不可能影响到另一侧的测量或者检测器,我们基于彼此相互独立存在推断所有光子对在三个方向上一定具有相同的极性,不管其开关设置如何。
  使用一个简单的符号来列举极性可能的不同种类,例如+--代表了一个光子在方向A上测量极性的结果是+(通过),在方向B上-(没通过),方向C上-;而+-+代表一个光子在方向A上+,方向B上-,方向C上+。有八种可能的极性组合:+++,++-,+-+,-++,---,--+,-+-,和+--。现在该考察开关设置不同时所收集的数据。

TOP

情形2:两个检测器具有不同开关设置  考虑一下开关设置为A-B,A-C,B-A,B-C,C-A,和C-B的情形。约翰·贝尔1964年的显赫成就是EPR思想实验的推广。正如下面所显示的那样,通过考虑开关设置不同的情形,实验可以直接与局域性隐变量理论对质。情形2的数据如下:
  1.在1/4时间中检测器记录到以相同几率随机产生的相同符号++和--。
  2.在3/4时间中检测器记录到以相同几率随机产生的不同符号+-和-+。

  情形1和2的数据的独特型式起源于成对光子间相关性——一侧检测器测量的结果相关于,或者说关联到另一侧检测器检测的结果。
  表1列举了情形2的测量的可能性。8行对应于可能的极性组合。6列对应于可能的开关组合。表中每一条目或是“同”或是“异”,表示条目的极性组合对于特定开关设置时,光子对产生相同或不同的测量结果。例如,表中下划线的条目表示当极性组合为+-+而开关设置为A-B时,两个光子被检测为不同的记号(左侧光子在A方向上为+,右侧光子在B方向上为-)。表1显示除了+++和---的极性组合外,总是有2个开关组合产生相同的结果,4个组合产生不同的结果。
  相关表1
  A-B A-C B-C B-A C-A C-B
  极性 +++ 同 同 同 同 同 同
  ++- 同 异 异 同 异 异
  +-+ 异 同 异 异 同 异
  -++ 异 异 同 异 异 同
  --- 同 同 同 同 同 同
  --+ 同 异 异 同 异 异
  -+- 异 同 异 异 同 异
  +-- 异 异 同 异 异 同

  既然开关是独立和随机地设置的,我们知道对于一个给定的极性,6种开关组合发生的几率是相同的。暂时假定我们有一大群相同的光子——每一种极性组合都有相同的可能性。换句话说,在一个相同的样本中光子+--的可能性会象+++或者任何别的极性一样。按照这中假定,表中的每一个条目都具有相同的统计权重。表中有同样数量的“同”和“异”,因此如果测量这一相同样本的大量光子,有一半时间会产生同样的测量结果。
  由于很快就会清楚的原因,接下来假定一个不一致的样本,其中的光子中没有+++或者---的极性,但是其它的极性表现是相同的。通过这种方式,我们去除那些对于所有开关设置总是产生相同结果的极性。现在对于所有剩余的极性有2个“相同”和4个“不同”,因此具有这些极性的光子(我们假定的不一致的样本)将总是只能记录到1/3的同样结果。对表1的思考显示任何极性的组合都将会产生至少1/3的相同的测量结果。换句话说,假定在一个测量样本的任意选择极性的混合,一定至少产生1/3的相同测量结果。
  以上简单的记数练习显示(假定局域性和存在是相互独立的)至少1/3的光子应该记录到相同的符号。这是一个贝尔不等式的简化形式。另一方面,实验的结果是1/4——这正是标准量子力学所预言的结果。
  上述结果如此重要而又优雅简洁,值得总结概括:情形1的数据显示当开关设置相同时(A-A,B-B,C-C),检测器的反应总是相同的。因为开关设置的时间安排,在局域性和相互独立存在的假定下,极性完全是特定的和等同于相关光子对的每一个成员。表列举了8种可能的极性及其对于6种不同的开关设置所产生的测量结果。它显示当开关设置不同时,没有任何极性组合所产生的测量结果中相同记号占检测器反应的比例低于1/3的;然而实验结果是1/4。实验对贝尔不等式的严格否定,上述记数的一种推广,迫使我们抛弃局域性隐变量理论。
  在这篇论文的主体部分,尤其是在第5节和6节,我尝试了说明实验对于违反贝尔不等式的哲学和物理学意义。
  译自International Philosophy Quarterly Vol.XXIX.No.4 Issue No. 116(December 1989) PP371-387

TOP